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Separatrix crossing and large scale diffusion in low-frequency three-wave systems
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The EX B guiding center diffusion in three low-frequency two-dimensional electrostatic waves is consid-
ered. It is shown that the stochastic guiding cef®€) diffusion can be explained and predicted with the help
of the rules of the adiabatic theory of Hamiltonian systems, (i)econservation of the canonical action except
at separatrix crossing times afi) time evolution of the canonical action determined by the surfaces enclosed
by the separatrices of the potential. The probability distributions are calculated. Our demonstration applies at
least for isotropically distributed wave vectors, very high Kubo numKerand closed equipotentials. A
statistical analysis of the dynamics shows that the GC motiorsjzaaed constrained random wajkverned
by a “complete trapping” scaling law for diffusiorB(K) =K?O. This result is demonstrated both semianalyti-
cally and numerically]S1063-651X98)06509-X]

PACS numbegs): 52.20-j, 52.35—¢g, 52.65-y

. INTRODUCTION c 8

Houy == g @02, sin(wt+dsinki-x+6,), (2)
Electromagnetic fluctuations are known to be important =1
for charged particle diffusion in magnetically confined plas- o
mas. The stochastiEx B guiding cente{GC) motion in a  Where the phases; and6; as well as the directions; of the
two-dimensional2D) low-frequency electrostatic turbulence Wave vectorss; = (k; cosx k; sine;) were taken at random in
perpendicular to the strong magnetic fi@lichas been recon- [0,1]. The frequencies were chosen noncommensurable and
sidered recently by Isichenket al. [1] (see also2]). An  Of the same orderw;=(1+i/5)"?wy, and®, is an ampli-
unexpected “percolation” scaling law has been provided bytude factor determining the control parameferWave num-
D(K)=K? with y=0.7 for the adimensional diffusion coef- bersk; proportional to the frequencias; are considered to

ficient as a function of the Kubo numbir. HereK is the ~ model a linear wave dispersion. A scalibg= e linear in the
ratio of an average electric drift velocity;=c|E|/B to an  control parametee has been obtained in RefL1] for the
average phase velocity. This prediction, quite different fromHamiltonian

that of the Gaussian statistical theorigs=(1) [3], has been

verified numerically in a range of large Kubo numbémswv H(x,y,t)~ sinx cog/+ e sin(kx+ 6,)cosqy— wot + 6y).
frequenciesby different authors: a result~0.8 is given in (3
[4] with 64 waves of random amplitudes, whereas0.7 is

reported with a very large number of waves[B] (with a  Other values of the scaling exponent were also reported. A
purek 3 spectrum and in[6] (with a Gaussian spectrum at resultD,,=2¢ was calculated in Ref12] for a Hamiltonian
small wave vectors and ka3 spectrum at large wave vec- of the form

tors). In the latter simulations, the electrostatic potential is

represented as a sum of randomly phased wgx&k H(x,y,t)~ sinx siny+ ey cog, (4

which in coordinatesx,y) is nonperiodic in they direction.
H~®(x,y,t)~ >, p(ky)sin(k,-x— wnt+ #) (1  But, in canonical coordinatex'=x—sirt, y'=y, the
n Hamiltonian becomes periodic in both directions:

with p(k,) given by thek spectrum of drift-wave turbulence. H(x",y’,t)~ sin(x’ — e sint)siny’. 5
Usually a unique frequency,,= wg is considered for all the
waves. Thus, with a large number of waves, numerical simuThe phase space has fixed separatrices, i.e., noncrossable
lations at high Kubo numbers generally verify the percola-lines aty’ = = 7/2, but also movindthus crossab)esepara-
tion scaling y=0.7, as well as a recent statistical theorytrices in the perpendicular direction, making the motion
based on conditional probabiliti¢8]. highly nonisotropic. Furthermore, for small valuesefnd

In a small humber of waves, however, the expongnt because of the periodicity ity the structure of the Hamil-
=0.7 has generallyot been observeéthe resulty~0.8[4]  tonian is only slightly perturbed.These Hamiltoniang3)
has been obtained with 64 waves of random amplitudes  and (4) are quite different from the wave Hamiltoniafb)
example, a resuly=0.92 has been obtained 0] for the  and (2), the sign of which reverses periodicallyA four-
six-wave Hamiltonian: wave Hamiltoniar{13]
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H(X,y,t)~ @[ sinx cos/+ e cogkx)cogqy— wt 6 motion with a quite good accuracy. These rules are used to
(xy.t)~ ¢l y+e cogkxjeoday—wt)] (6 show that the stroboscopic trajectories in a periodic box in

the phase space for high Kubo number are very close to the

yields the scalindj_)(?é)w?éo-sat larged with the parameters trajectories of the frozen Hamiltoniattrajectories in the
k=e=1 andq=w=2. Hamiltonian at a fixed time In Sec. IV, we define what we

The study developed below of the GC motion in low- call an equivalent phase space and define the rules for large
frequency waves applies quite generally to the randomiycale motion induced by separatrix crossings. In Sec. V, we
phased wave potential, each having its own phase velocity@ive our conclusions.
The main restriction is that the potential should be free of
infinitely long equipotentials. Il. GUIDING CENTER MOTION IN A THREE WAVE

We prove below that th&xB GC dynamics in electro- HAMILTONIAN SYSTEM

static waves with very low frequencies is governed by the ) o ) o
separatrix crossings, i.e., by the time evolution of the sur- The analytic description of the charged particle motion in
faces areas enclosed by the separatrices of the potenti@fong magnetic field can be simplified by applying an aver-
(named “domains” in the phase spac@rovided they aging tran_sformatlon to remove the h|gh_frequency_gyrat|on
change faster than the canonical action of the well-trappe@f the particle around the magnetic field lines. Considering a
GC. We also show that in the case of a potential having £traight and homogeneous magnetic field, ige<B1, and
series of regularly spaced moving separatrices the diffusiof’€ absence of an electric field in thgdirection, the aver-
coefficient follows the “complete trapping” scalin§(K) aged motion, call_ed _the GC motion, reducc_as to a f“’.‘-‘e fI|_ght
—K°, i.e., the scaling obtained if12] for the Hamiltonian along the magnetic field and to a slow motion in a direction

(4). In this case it is the canonical action of the We"_trappedperpendicular to both the electii(x,y,t) and the magnetic

GC that changes faster than the surfaces areas of the ph '%]ds. The regulting gquations of motion are known as the
X B GC motion, which reads

space domaingactually, in this case, the surfaces areas o
the domains do not change at)alh complete trapping scal-
. . . - d c
ing has also been obtained analytically in a 1D problem by —Y=Ub+ =E(x,y,t) XB, 7
using conditional probabilitiegl4] (see alsd15]). dt B

We consider here the large scdie< B motion in three
low-frequency electrostatic waves as a simplified representavhereY =x1,+y1,+21, is the GC position andl is acon-
tion of a randomly phased wave potential. This type ofstantvelocity parallel to the main magnetic field= B/B. In
model has already been considered16—18. It has been the plane perpendicular tB the dynamics is obviously a
shown in[17] and[18] that such simple models are useful to Hamiltonian with
study the Hamiltonian dynamics in case of multiple separa-
trix crossings and for checking the numerical integration of H(x,y,t)=—(c/B)P(X,y,t) (8)
the equations of motiorfwhich can be performed with a
symplectic integratof20] or with a non-Hamiltonian scheme and
[21]). Contrary to our previous three waves model] , here
all the separatrices are moving in the phase space. Thus, the E(x,y,t)==VO(x,y,1). (€)
GC are now allowed to visit the whole phase space instead of _ _ . _
being enclosed in a single squared domain of the phasgere,x andy are canonically conjugated coordinates. This
space. Here, we analyze the possibility of large scale diffuliamiltonian system is a first-order approximation to the GC
sion in a slowly varying three wave Hamiltonian. The GC motion in an e_Iectrostatlc turbulence, e.g., a drift wave tur-
motion is described as a sum of a two types of displacebulence of fusion plasmas. o
ments, a first one from phase space domains to neighboring From the point of view of Hamiltonian systems, the low
ones and a second one describing the changes of the dgguency limit is very peculiar. It is well known that in this
positions inside the domains. The latter motion has alreadgase an adiabatic invariant exists and the Hamiltonian
been explained if17] and [18] where, using a statistical system is nearly integrable. This fact has not been included
method, the problems related to the very large number oin previous theories. We shall prove below that Bt B GC
separatrix crossings have been overcome. In the presedynamics in very low frequency electrostatic waves is gov-
work the former motion is described statistically and derivederned by the mechanism of separatrix crossings.
from the time evolution of a probability distribution. The We consider the following three-wave electrostatic poten-
main feature of our method is the transformation of the cony;g (D(m:
tinuous dynamics into a discrete dynamics on gridpoints
where the motion reduces tospaced constrained random

walk similar to the one discussed b§9], i.e., a random walk P(x,y, 1) =27 Po{siny + t]+ sinl cod 7/6)x—sin(7/6)y

where only few directions and Iengths for the displacements + %t_] +sir[ — cog 7/6)x— sin(w/6)y+ %t_]},
are allowed. In our case, the constraints are closely related to
the rules determining the separatrix crossings. (10

In Sec. Il, we define the three wave Hamiltonian and dis-
cuss the structure of the potential: position of the separatriceghere ®, is an amplitude andx,y,t} are dimensionless
and areas of the domains in phase space. In the next secti@patial and time coordinates reducedkgyand g, and the
we discuss a few simple rules permitting us to follow the GCequations of motion are
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FIG. 1. Separatrices of the Hamiltoni&®) represented at time W = domains D3
t=0 showing two different domain®1 andD2.

FIG. 2. Separatrices of the Hamiltonié) represented at time

dx d_ d? d_ t/2m=1/30 showing the domair31 andD2 and the new domains
—=—K—=0, ==K—=, 11 D3. A comparison with Fig. 1 shows a displacement of the domains
dt dy dt dx along the—x and +y directions.

where ®=®/®,. The parametelK=c®oki/Bwy is the D1 have a smaller surface area than at titred whereas
Kubo number. The dimensionless Hamiltonian is simplythe domains of the s@2 now have a hexagonal shape and
H(x,y,t)=®(x,y,t). The wave vectors and wave frequen- have larger surface area. The crossing points of the three
cies are chosen to satisfy five main conditions on the geoseparatrices at=0 are the initial points of a new set of
metrical structure of the potential, name(i), we impose that domainsD3. At /2= 1/12 (see Fig. 6 the structure of the

for all times all equipotentials are closed curvés, the po- o :
. ) e : : potential is given by a regular hexagédomainsD2) en-
tential has no fixedtime independentstraight separatrices, circled by an ensemble of identical triangles of the ts

(i) the potential is spatially periodi¢this condition is . - —
needed for developing the semianalytical analysis of the G@&Nd D3. From timet=2/12 to t=2w/6 the process con-

diffusion), (iv) the wave vectors are chosen isotropic in thetinues until the triangle®1 disappear and are replaced by
(x,y) plane, andv) the potential is periodic in time. new domainsD4. Analyzing the equations of the separa-
These constraints are sufficient to avoid the possibility ofirices, we see that the structure of the potential is recovered
trapping the guiding centers. The lowest value of the Kubggach t=2#/6 but with shifted positions. For instance,
number considered in our numerical investigationsKis the intersection point of the separatriceg(ezy}

=500, an already high value compared with thafdfand  —1_27/12 277/3} at timet=2#/6 is the closest to the in-

[5] i i = tersection poin{x,y}={0,0} at imet=0. The domains are
The structure of the potentla.IO) at var|.ous.t|mest/ 2T thus moving horizontally and vertically at a speeg=x/t

=0, t/27-r.= 1/30, t/277=1./12 is shown in Flg.. 1, 2, @d = (—1/2)/cosr/6) andv_yzyTzz, respectively. The sur-

6, respectively. The notations used in the figures &re face area of the domains can also be evaluated with the help

=t/2m, X=x/[2m cos(@/6)], and Y=y/2mw. The phase f Egs.(12). In the time intervat=0 tot = 27/6 the surface
space is divided in periodic cells by three sets of straightyreas | S, andS; of the domainsD1, D2, andD3 are

separatrices defined by given, respectively, by
— — m\— 1— 3 —\2
y=2mn,+2t, —sin(§ X+ Ey:2wn2— Et’ S, = (2m)° ( —GL)
2 cog /6 2w’
1 (12 g m/6)
T\ — — —\2 —\ 2
sin(— X+ zy=2mnz— =t, (2m)? t t
3 2 2 —— """ lo_|1-6—| —| 6—
S2 2 cog 7/6) 2-|1 6277 6277 13
wherenl,ni,ng are integers. ) — 2
At time t=0 (Fig. 1) the three separatrices of the poten- S,= (2m) ( L)
tial cross at a single point, dividing the phase space in tri- 2cogw/6)\ 27

angles all similar in shape and all having the same surface _

area. These triangles adomainsin the phase space are de- To get the surface area in the next time intertzal27/6 to
notedD1 or D2 according to the sign of the potential. At a t=4/6, the indexes in Eq$13) must be shifted by one unit
later time, e.g.t/27m=1/30 (Fig. 2), the triangles of the set and the time increased byz26. The surface area of the
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A (ii) The canonical action is conserved except at separatrix

S e i crossing times, meaning that the surfaces enclosed by the
lo bz /D3 bi b> Do trajectories are constant whereas the surfaces enclosed by the
o ol separatrices are not.
(iii) The separatrix crossing occurs when the surface en-
closed by the separatrix of the domain containing the GC is
o equal to the surface enclosed by the trajectory of the GC.
S/S l (iv) The new domain has constant or increasing area.
0.4 For example, a GC starting a0 from domainD1 with
the canonical action equal to the area of this domain will
T »

ol immediately quit his domain. All theix domains surround-
/ ing each domaib1 have increasing area and are thus able
, to capture the GC. Each of the three smallest domains could
Cty b 1/6 263 t4 3/6 4/6%5 15 5/6 T capture the GC with probabilityplﬁz(1/3)(d83/dT)/
? g ¢ ¢ 4 > (dS,/dt), whereas the three largest domains could capture

3 4 5 Kk in G
the GC with probabilityp;_.,=(1/3)(dS,/dt)/(dS, /d1).

FIG. 3. Time evolution of the _surface areas of_ the domains OfRecaIIing Egs(14), the transition probabilities fot/27 in
the phase space represented during 1/2 of the period. The dynamlﬁ.?e interval[0,1/6] are readily evaluated:
of a GC with initial condition in domairD1 and canonical action ' '

1,=0.28 is also shown. Timds,t,, ... t, are separatrix crossings

times, i.e., times at which the area of the domain containing the GC N d_SQ d_sl _ (1—12t/2m)
. . . p1H3_ p_ — — — 1 (15)
is equal to the canonical action of the GC. dt dt (1—6t/27)
gomai;wsDZ, 53, andD4 in the tirTe ibntervaf=27rl6 to ds, /ds, 6t/27 s
t=4x/6 are thus given, respectively, 2T 0=E =/ =T =
T g P y. by P27/ Tdt| T (1—etzm)
S, (2m? [ 6( t 1”2 _
=5 7~ 1 05— %/]| At t=0, p;.,=0 and the GC is necessarily captured
2 6 2 6 . 1-2 !
cog /6) & (with probability 1/3 by one of thelthree domainsD2 (pro-
2172 TO1\1? T 1\ vided the GC is captured by the nearest neighhoiis also
ngl[ 2_ —G(L— _) —[G(L— _” ] worth noting that rulesi)—(iv) do not depend on the Kubo
2 cog 7/6) 2w 6 2w 6 ' number. This implies that the GC dynamics, governed by the
(14 separatrix crossings, is considered to be isaturated re-
_ ) gimefor large Kubo numbers: the dynamics is insensitive to
_(2m)? t 1 changes in the value of the Kubo numker in the wave
34_2 cog /6) 6 or 6/ frequency. We therefore expect that the GC diffusion will

follow a complete trapping scaling law, i.©,(K)=K?.

This process continues forever, new domains denoted with et us consider a GC initially in one of the domaibd
larger indexD5, D6, ... with surface are&®s, Sg, ... re-  with a canonical actiorl, smaller than the area of its do-
placing the disappearing ones. We note that a periodicitynain. The behavior of this GC is depicted in Fig. 3. At time
cell of the potential has surface are®=(2w)2/ t; the canonical action of the GC is equal, for the first time,
[ cos@@/6)sin(7/6)]. The time evolution of the surface area of to the surface of domai®1. According to rulefiii) the GC
the domains in phase space is summarized in a single gragierforms a separatrix crossing to reach either one of the do-
(Fig. 3), where the vertical axis represents the surface of thenains of the seD2 or one of the seD 3, respectively, with
domains whereas the horizontal axis is the time axis. a probability p or g divided by the number of accessible

The surface area of a domain is measured vertically eithedlomains(i.e., three in the case of transitions to first neigh-
between two ‘S’ curves or between an '’ curve and one  bors and for each set, see Figs. 1, 2, andaéd canonical

of the horizontal lines. At the starting time=0, only two ~ actionl; or I (with 13<I,). This event is a first kindde-
types of domaingdomainsD1 andD?2) fill the phase space. NhotedT1) of separatrix crossing. At timg=2m/6—1t, (see
Considering the very low frequency limit of the wave Fig. 2) the canonical action of the GC could be equal to the
evolution and, because of the Hamiltonian nature of thesurface area of the domairi32. If this happens, the GC
equations of motion, the GC displacement follows a smallPerforms a new separatrix crossirigf type T2), which
number of very simple rulegirst proposed if22], see also brings it with probability 1 into one of the three nearest
[23]). domainsD3 and with new canonical actioh, (its initial
(i) A separatrix crossing is an instantaneous event. This i§n8. At time t;=4m/6+1, (see Fig. 3the canonical action
a good approximation for very large Kubo numbér(or o equals the surface area of dom&B. The GC having this
equivalently very small wave frequencjesince the motion action performs a separatrix crossifaj type T1) to one of
along a separatrix is performed in a very short time intervathe three nearest domails4 or to one of the three nearest
compared to the time interval between two separatrix crossdomainsD5 with a probability given, respectively, /'3 or
ings. g/3 and new canonical actions or | ;. Thus, with the help
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TABLE |. Separatrix crossing times, canonical actions, and 30
transition probabilities of the first five separatrix crossings. The
separatrix crossings to tg are similar to the separatrix crossings at 20+
t, tot,. A set of four separatrix crossings thus defines a fundamen-
tal periodicity in the diffusion mechanism. 1ol
Transition N
Crossing time ~ Domain nhame  Canonical actiorprobability Yor
0 D1 lo 10 F
t,<2m/12 D1—-D2 lo—14 p/3
D1—-D3 lo—11 q/3 20 F
t,=2mwl6—t; D2—-D3 l1—1g 1/3
t3=4mw/6+1t, D3—D4 lo—14 p/3 30t
D3—D5 lo—11 q/3
ty=6m/6—t; D3—D5 11—l 1/3 -4 s s s . . . . .
-30 -20 -10 0 10 20 30 40 50 60
D4—D5 l1—1g 1/3 X
ts=8m/6+1t; D5—D6 lo—14 p/3
D5—D7 lo—11 q/3 FIG. 4. A GC stroboscopic trajectof000 periods, Kubo num-

ber K=1000). The initial condition is X=0.375/2r, Y
. ) ) ) =0.75/27 cos(l6).
of Fig. 3, we are able to identify the times of occurrence of

the separatrix crossings and the sets of domains where the

GC is mov_ingr:o. This _Ie_vgllutilon_rl;lor thgl first five rs;ep_aratrix ained with an Alpha computer and a CRAY J916 computer.
crossings Is shown in Table |. The table gives the times Okre nymerical simulations performed over 1000 periods of

separatrix crossings, the name of the domains after a Sépalg potential for 64 initial conditions were obtained on a

trix crossing, the new values of the canonical action, and th%RAY T3E computer and required about 8h CPU time on
transition probqbility to perform "?‘J“m.p to a new .d.omﬁi_”- each of the 64 processors. The accuracy of the numerical
The GC dynamics depicted here is valid for a specific initial oq 5 can be checked from the stroboscopic plots of the GC
condition, defined by the initial domaiD1 and the initial trajectories. The case of the GC starting in doraih with

canomca_ll actlor_io, because as we see here_,_ most of thfaa canonical action slightly smaller than the surface of its
s_eparatrlx Crossings are perforrn_e_d with transition prObab'l"noming domain is typical of the behavior of all the trajecto-
tiesq andp determined by the initial state of the GC.

We observe that the canonical action of the GC at strobo-

scopic times=4mn (n is an integer switches between the
initial canonical action and a second value, twenplemen-
tary canonical actiori;. As a consequence, at stroboscopic
times, the positions of the GC are the pointswb trajecto-
ries of the frozen Hamiltoniari.e., the trajectories of the

Hamiltonian witht considered as a constatihat enclose a
surface whose area equals either the initial canonical actior
of the GC or thecomplementarycanonical action ;. The
randomness of the GC trajectory is in fact strongly spatially
constrained because, as we see here, the GC must be ¢y
specific trajectories of the frozen Hamiltonian at periodic
times.

The relationship between one stroboscopic trajectory with

two trajectories of the frozen Hamiltonigat timet=0) is
shown in Fig. 4, where we show the numerical solution of
the equations of motion at large Kubo numbgere K
=500) and in Fig. 5, where the same points, brought back in
a single moving periodicity box of the phase space, deter-
mine two distinct trajectories of the frozen in time Hamil-
tonian. To observe numerically this property of the three
waves Hamiltonian, the equations of motion of motidr)

were solved using a fourth-order Runge-Kufi) method. FIG. 5. The positions of the GC of Fig. 4 at stroboscopic times
As in[18], the statistics of eventshe values of the transition (1000 periods shown in a reference moving square reproduce the
probabilitieg is not exactly the expected one but the accu-yajectories of the frozen Hamiltonian. One initial condition gives a
racy of the integrator seems sufficient for our purpose. Atrajectory corresponding to the initial GC canonical action plus a
Kubo numberK = 10°, a stroboscopic point is obtained after second trajectory corresponding to a complementary canonical ac-
4x 1P iterations of the RK. Most of the results were ob- tion (small circles.
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A gers, correspond to the domailsl whereas the points
5 ° ° ° {m,n}={2a+2,4b+ 2} correspond to the domairi32 and
>< ° >< o >< ° the points{m,n}={2a+1,4b+3} correspond to the do-
0 0 0 mainsD3. All the remaining positions on the grid must be
o o o removed from the definition of the equivalent phase space.
_ D2 >< ¢ Dz>< o D2>< At the next equivalent phase space time, the domaifs
Y 1 ° have disappeared and are replaced by the doniaéhsgsee
Fig. 3. Therefore, atk=2 the points{m,n}={2a+3,4b
>< >< + 3} correspond to the domaims4 whereas the other points
keep their relations to the domaib® andD3. At k=3 the
>< >< )< points{m,n}={2a+2,4b+ 2}, previously related to the do-
mainsD2, now belong to the domairi35 and so on.
0 The jumps(separatrix crossingdollow the rules{n—n
- +1m—m+1} or {n—n+2m—m+2}. More specifically,
X the separatrix crossing of typl is a jump with probability
0 Domains D1 p/3 from a point{m,n} to one of the three pointim+1n
© Domains D3 +1}, {m—1n+1}, {m,n—2} or with probabilityq/3 (re-
FIG. 6. Representation of the domains of the phase space at tinfé@ll PT0d=1) to one of the three pointsfm+1n
t/l2w=1/12, i.e. k=1 and their elliptic point. -1}, {m-1n-1}, {m,n+2}. A separatrix crossing of

type T2 is a jump with probability 1/3 from a poigm,n} to

one of the three points {m+1n+1}, {m-1n
Ill. A SEMIANALYTICAL ESTIMATE +1}, {mn-2}.

OF THE DIFFUSION COEFFICIENT We now introduce a probability distributio®d(m,n,k) of

We now briefly report a method fdi) determining proba- finding a GC at the point,n at time k. We consider the
bilistically the domains that could be visited by the GC at ainitial condition P(m,n,0)= 6y-m,,n-n,, i-€., the GC is ini-
certain time andii) evaluating the diffusion coefficient from tially at the point {my,ng}. This initial point could be
the GC dynamics, i.e., from the separatrix crossings. {m,n}={3,3} as in Fig. 7. After the first separatrix crossing,

In this method, each domain of the phase space with itghe probability distribution is
full structure(Fig. 6) is replaced by its elliptic pointFig. 7).

These points are distributed regularly in the phase space due p

to the periodicity of the potential. The best realization is P(m’”'l):§(5mfmoflvnfnofl+5mfmo+1,nfnofl
obtained at time$/27= (— 1+ 2k)/12 (wherek, theequiva-

lent phase space timés a positive integerwhen all the +s )+ 9(5

triangles in the phase space have the same shape and size m=mg.n=no=2/ 1 31 %m-mg-1n-ng+1

(Fig. 6). In this representation, a GC displacement reduces to

a jump from one gridpoint to another. The intedeecan be + 5m*mo+1r”*”o+1+5m*m0v”*”o+2) (17)
used to count the number of separatrix crossings or can be

used as a measure of t|me as can be seen in F|g 3. Twce the probablhty d|Str|bUt|On |p/3 n three domalnﬁ)Z
directions of the jumps are determined by the rules for &nd d/3 in three domainsD2. With the initial condition
separatrix crossing, i.e., they are performed in direction§(3,3,0)=1, the first separatrix crossing give3(4,4,1)
given by the positions of the elliptic points of the domains =P(2,4,1)=P(3,1,1)=p/3 and P(4,2,1)=P(2,2,1)
having increasing surface aréhe separatrix crossings are = P(3,5,1)=q/3. At the second separatrix crossif@ type
spaced constrained jumpd he coordinates of a point in the T2) only the part of the probability distribution correspond-
grid m,n are chosen in such a way thatkat 1 the points ing to the domain®2 changes as shown in Table I. Thus to
{m,n}={2a+3,40+3}, wherea andb are arbitrary inte- describe the second separatrix crossing, we need three partial
probability distributions, denotedA(m,n,k), B(m,n,k),
C(m,n,k), the sum of which reproduces the probability dis-

o2 o2 02 tribution
4 [3 ) °
P(m,n,k)=A(m,n,k)+B(m,n,k)+C(m,n,k). (18)
D1 D1 D1
n3 . [}
The initial conditions are chosen as follows:
2 eDa 2 b3 (] b3
A(m,n,0)= 5m,m0,n,no, B(m,n,00=0, C(m,n,0)=0.
D1 D1 D1 - (19
2 4 6 _ . . .
3 m 5 Right after the first separatrix crossing, we have
FIG. 7. The equivalent phase space is the set of elliptic points of P(m,n,1)=(T,+Tg4)A(m,n,0), (20

the domains shown in Fig. 6. The distances are resd¢akeskntially
by a factor 2 on the vertical axigor simplicity of the analysis. where
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-~

TpA(m,n,O)Eg{A(m—l,n—1,0)+A(m+ 1n-1,0 5 ‘l* g I
\ /\ a 3+/\ /
+A(m,n+2,0)}, ST v 2079 JB/9
4 |- xT, e J .
= g _ 3t v T
T4A(M,n,0)= 3{A(m 1n+1,0+A(m+1,n+1,0 .| \q/3+/\q/3+/
/,2}’)/9 /2p/9\
+A(m,n—2,0". 21) 14 l k J
0-_
Similarly, we define the phase space translafign ] g , el
-1 - p/9
1 >4 P S,
T,A(m,n,1)= §{A(m—1,n—1,1)+A(m+ 1n-1,1 s

+A(m,n+2,1)}. (22

Obviously,T,A(m,n,0) is nonzero on the points correspond-
ing to the domaind2 where the GC has the canonical ac- FIG. 8. The probability distribution at the equivalent phase
tion I, andT,A(m,n,0) is nonzero on the points correspond- space time&k=0 and its change due to a third separatrix crossing.
ing to the domaindD3 where the GC has the canonical
actionl . for the black ones as shown in Tablednd transports the

In A(m,n,k), we collect the part of the probability distri- obtained value to a new position in phase space. The values
bution, which changes at each separatrix crossing, i.e., &f the probability distribution that are transported this way
each time intervalAt/27=1/6, whereas irB(m,n,k) and are given in Table Il for the first five separatrix crossings.
C(m,n,k) we collect the part of the probability distribution,
which changes each two separatrix crossings, i.e., at each TABLE Il. Equivalent phase space tim&s domain names, ca-

time intervalAt/27= 1/3. The first separatrix crossing gives nonical actions, and transfer of probability distribution after the first
five separatrix crossings.

A(m,n,1)=T,A(m,n,0), B(m,n,1)=T,A(m,n,0),

(23 k domain action probability distribution
C(m,n,1)=C(m,n,0), 0 D1 Iy 1
whereA(m,n,1) andB(m,n,1) are, respectively, the prob- 1 D2 | p 1
ability density for the GC to be in a domaib, and in a ! 3( )

domainD;. At the next separatrix crossing timie=2m/6

/ q
—t,, i.e., k=2, only the partA(m,n,1) of the probability b3 Iy 3D
distribution changes because the separatrix crogsihtype 1
T2) is a jump from the domain®2 to one of three nearest 2 D3 lo _(E)
domainsD3 (see Table )l The second separatrix crossing 313
leads to D3 |’ q
! 3
A(m,n,2)=T;A(m,n,1), B(m,n,2)=B(m,n,1),
p(lp
(24) 3 D4 I, i
C(m,n,2)=C(m,n,1). 3133
. - D5 ¥ aftp
The partial probabilitiesA(m,n,2) andB(m,n,2) are non- 1 3133

zero on the points corresponding to the dom&r@sbut with q
different canonical actionk, andl;. For later convenience, D3 I 5(1)
this transformation can also be written

l1jp 1 p ¢
4 D5 | I Exs 4+ 2
A(M,n,2)=T4[ T,A(M,n,0)+C(m,n,0)], 0 313737373
(25) 1
B(m,n,2)=T,A(m,n,0, C(mn2)=0. D5 lo g ég)
The probability distribution ak=2 is shown in Fig. 8, 5 D6 " p }EX}XEJrg)
where the values oP(m,n,2) are given at their positions 31337373 3
{m,n}. The arrows indicate the directions of the transfer of , q/lp 1 p q
probability distribution due to the next separatrix crossing. b7 ly 3133%3%3%3
The arrows represents symbolically a transport of the prob- D5 |’ 1
ability distribution in the phase space; it multiplies the value ! g 52)

of the probability distribution at a given point by the transi-
tion probability (in this casep/3 for the gray arrows ang/3
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The third (k=3) separatrix crossing, of typEl, concerns 2500
the part of the probability distribution corresponding to do-
main D3, i.e., B does not change. Thus, at tinhg=47/6
+1t, we have 20001 !

A(mn,3)=T,A(mn,2), B(m,n3)=B(m,n,2),

(26) 1500
C(m,n,3)=TqA(m,n,2) <)-(2+?2> o

whereA(m,n,3), B(m,n,3), andC(m,n,3) are related, re- 1000
spectively, to the domain®4, D3, andD5 and to GC
with canonical action$;, 17, andl;. ~

The fourth separatrix crossing affects all the partial distri- So0r Ry
butions except the one concerning the domds i.e.,C
does not change and we have
00 100 200 3ll)0 400 500 600
A(m,n,4)=T,[A(m,n,3)+B(m,n,3)], :

B(m,n,4) =0, (27) FIG. 9. The mean square displacem(aT?b:<;2+y2) averaged

over 64 trajectories with initial conditions taken on a grid in phase
space. The initial canonical actions are consequently random num-
bers. 500 periods are shown. The Kubo numberdard 000(con-
tinuous ling andK =500 (dashed ling The scaling for the dimen-

A(m,n,4)=T1[TpT1{TpA(m,n,O)+C(m,n,0)} sionless diffusion goeﬁicientg is approximativdE/(K)wK0 and
the average numerical value 462125/506~4.25.

C(m,n,4)=C(m,n,3).

In terms of the initial values, this transformation reads

+TA(m,n,0)],
displacement linear in time. The diffusion coefficient derived

B(m,n,4)=0, (28)  from Eq. (29) still depends on the initial valuef the GC
canonical action through the transition probabilifeandq.
C(m,n,4)=TyT1{TpA(m,n,0)+C(m,n,0)}. With p~0.66 andg~0.33 corresponding to a GC with ini-

tial canonical actiony= S/16 the diffusion coefficient of the
motion along them axis (corresponding to the axis) is
D,,~6.083, whereas fop~0.95 andq~0.05 the result is
P(m,n,4)=A(m,n,4)+C(m,n,4). (299 D,~7.65.

) . ) Figure 9 shows a linear increase of the averaged mean
The next four separatrix crossings are described by the samguare displacement obtained from the numerical solution of
formulas but withA(m,n,4), B(m,n,4), andC(m,n,4) for  the equations of motion performed for 500 periods of the
new initial values. The whole scenario is summarized inpotential and for two different values of the Kubo number: at
Table Il, where the probability distributioR(m,n,k), i.e., K = 1000 (continuous ling and atk =500 (dashed ling We
the probability to be at the equivalent phase space kme  gpserve that the slopes of the mean square displacements

a given domain with a given canonical action, is given for(averaged over 64 trajectorjes.e., the dimensionless diffu-
the first five separatrix crossings and for an initial condmonsion coefficients are almost identic@(K)~ K.

n Elj_?]m?lef andtfor gg '_n'tt'ﬁl canonlcal_ aCt('jOib' ibing th To facilitate the comparison with the result of the semi-
€ transformation28) is thus a mapping describing the analytical method we performed another numerical simula-

transport across the domains in the.phase space. I.t Is now #n with 64 GC having different initial positions but the
easy task to show thal) the probability density defined by same initial canonical actioh,=S/16. In this case, a diffu-
the iterative procedure given hereabove leads to a Gaussian '

distribution and(ii) the mean square displacement is propor-Sion coefficientD,~1.90 along thex axis and a diffusion

tional tot, i.e., the process is diffusive. Here the average of°efficientDy(K)~1.78 along they axis are obtained. The
a “function” defined on the equivalent phase space is thdormer result is within 15% from the value of the semiana-

weighted sum at a given time of the value of the function onlytic calculation: D,~D, cosi(w/6)/4~2.09. Therefore the
all the equivalent phase space points. The mean square dgemianalytical calculation reasonably represents the numeri-

and the total probability distribution, aftde=4 separatrix
crossings, is given by

placement is accordingly evaluated as follows: cal results for a given initial action.
(r3(k))=>, (m?+nd)P(m,n k). (30) IV. CONCLUSIONS
m,n

A three wave Hamiltonian has been considered as a sim-
The iterative procedure is very easily implemented on glified model of EXB electrostatic turbulence. We have
computer(a few lines in Matlab languageand permits a shown numerically and analytically that for large values of
very easy evaluation of the mean square displacement. Thae Kubo number the GC dynamics is controlled by the sepa-
result is typical of a diffusive process, i.e., a mean squareatrix crossings, i.e., the canonical action is conserved, the
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separatrix crossings are instantaneous, and so on. Usingaae not independent but the direction of the separatrix cross-
method that reduces the separatrix crossings to jumps frommg is chosen at random. Our semianalytical model of diffu-
one gridpoint to another, we have determined iteratively thesion leads to a complete trapping scaling law, i.e., the dimen-
change in time of the probability density. The mean squareionless diffusion coefficien is independent of the Kubo
displacement and the diffusion coefficient have also been . q- D(K)=K°. This scaling is valid for very large
evaluated. We have shown that the GC diffusion in thre

. ) ) e ubo numbers.
waves is a random walk with the following properti€s:the
dynamics considered here is not a continuous time random
walk (CTRW) because all the separatrix crossings occur at
fixed time intervals(ii) the dynamics is a spaced constrained This work has been done while one of (BW.) was at
random walk(see, e.g[19]) because the separatrix crossingsthe Center de Recherche CEA, Cadara@france with the
can be reduced to spatial translations of the phase space fimancial support of a Euratom Mobility grant. Discussions
directions defined by angles multiples of 30°, aiid) the  with Dr. F. Spineanu and Dr. M. Vlad and with Professor Y.
probabilities of jumps for two successive separatrix crossingg&lskens are greatly acknowledged.
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