
PHYSICAL REVIEW E SEPTEMBER 1998VOLUME 58, NUMBER 3
Separatrix crossing and large scale diffusion in low-frequency three-wave systems
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The E3B guiding center diffusion in three low-frequency two-dimensional electrostatic waves is consid-
ered. It is shown that the stochastic guiding center~GC! diffusion can be explained and predicted with the help
of the rules of the adiabatic theory of Hamiltonian systems, i.e.,~i! conservation of the canonical action except
at separatrix crossing times and~ii ! time evolution of the canonical action determined by the surfaces enclosed
by the separatrices of the potential. The probability distributions are calculated. Our demonstration applies at
least for isotropically distributed wave vectors, very high Kubo numberK, and closed equipotentials. A
statistical analysis of the dynamics shows that the GC motion is aspaced constrained random walkgoverned

by a ‘‘complete trapping’’ scaling law for diffusion:D̄(K)5K0. This result is demonstrated both semianalyti-
cally and numerically.@S1063-651X~98!06509-X#

PACS number~s!: 52.20.2j, 52.35.2g, 52.65.2y
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I. INTRODUCTION

Electromagnetic fluctuations are known to be import
for charged particle diffusion in magnetically confined pla
mas. The stochasticE3B guiding center~GC! motion in a
two-dimensional~2D! low-frequency electrostatic turbulenc
perpendicular to the strong magnetic fieldB has been recon
sidered recently by Isichenkoet al. @1# ~see also@2#!. An
unexpected ‘‘percolation’’ scaling law has been provided
D̄(K)5Kg with g50.7 for the adimensional diffusion coe
ficient as a function of the Kubo numberK. HereK is the
ratio of an average electric drift velocityvd5cuEu/B to an
average phase velocity. This prediction, quite different fr
that of the Gaussian statistical theories (g51) @3#, has been
verified numerically in a range of large Kubo numbers~low
frequencies! by different authors: a resultg'0.8 is given in
@4# with 64 waves of random amplitudes, whereasg'0.7 is
reported with a very large number of waves in@5# ~with a
purek23 spectrum! and in @6# ~with a Gaussian spectrum a
small wave vectors and ak23 spectrum at large wave vec
tors!. In the latter simulations, the electrostatic potential
represented as a sum of randomly phased waves@7,8#:

H;F~x,y,t !;(
n

p~kn!sin~kn•x2vnt1fkn
! ~1!

with p(kn) given by thek spectrum of drift-wave turbulence
Usually a unique frequencyvn5v0 is considered for all the
waves. Thus, with a large number of waves, numerical sim
lations at high Kubo numbers generally verify the perco
tion scaling g50.7, as well as a recent statistical theo
based on conditional probabilities@9#.

In a small number of waves, however, the exponeng
50.7 has generallynot been observed~the resultg'0.8 @4#
has been obtained with 64 waves of random amplitudes!. For
example, a resultg50.92 has been obtained in@10# for the
six-wave Hamiltonian:
PRE 581063-651X/98/58~3!/3768~9!/$15.00
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sin~v i t1f i !sin~k i•x1u i !, ~2!

where the phasesf i andu i as well as the directionsa i of the
wave vectorsk i5(ki cosai ,ki sinai) were taken at random in
@0,1#. The frequencies were chosen noncommensurable
of the same order:v i5(11 i /5)1/2v0 , andF0 is an ampli-
tude factor determining the control parameterK. Wave num-
berski proportional to the frequenciesv i are considered to
model a linear wave dispersion. A scalingD̄'e linear in the
control parametere has been obtained in Ref.@11# for the
Hamiltonian

H~x,y,t !; sinx cosy1e sin~kx1ux!cos~qy2v0t1uy!.
~3!

Other values of the scaling exponent were also reported
resultD̄xx52e was calculated in Ref.@12# for a Hamiltonian
of the form

H~x,y,t !; sinx siny1ey cost, ~4!

which in coordinates (x,y) is nonperiodic in they direction.
But, in canonical coordinatesx85x2sint, y85y, the
Hamiltonian becomes periodic in both directions:

H~x8,y8,t !; sin~x82e sint !siny8. ~5!

The phase space has fixed separatrices, i.e., noncros
lines aty856p/2, but also moving~thus crossable! separa-
trices in the perpendicular direction, making the moti
highly nonisotropic. Furthermore, for small values ofe and
because of the periodicity int, the structure of the Hamil-
tonian is only slightly perturbed.@These Hamiltonians~3!
and ~4! are quite different from the wave Hamiltonians~1!
and ~2!, the sign of which reverses periodically.# A four-
wave Hamiltonian@13#
3768 © 1998 The American Physical Society
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H~x,y,t !;f̃@sinx cosy1e cos~kx!cos~qy2vt !# ~6!

yields the scalingD̄(f̃)'f̃0.8 at largef̃ with the parameters
k5e51 andq5v52.

The study developed below of the GC motion in low
frequency waves applies quite generally to the rando
phased wave potential, each having its own phase velo
The main restriction is that the potential should be free
infinitely long equipotentials.

We prove below that theE3B GC dynamics in electro-
static waves with very low frequencies is governed by
separatrix crossings, i.e., by the time evolution of the s
faces areas enclosed by the separatrices of the pote
~named ‘‘domains’’ in the phase space! provided they
change faster than the canonical action of the well-trap
GC. We also show that in the case of a potential havin
series of regularly spaced moving separatrices the diffus
coefficient follows the ‘‘complete trapping’’ scalingD̄(K)
5K0, i.e., the scaling obtained in@12# for the Hamiltonian
~4!. In this case it is the canonical action of the well-trapp
GC that changes faster than the surfaces areas of the p
space domains~actually, in this case, the surfaces areas
the domains do not change at all!. A complete trapping scal
ing has also been obtained analytically in a 1D problem
using conditional probabilities@14# ~see also@15#!.

We consider here the large scaleE3B motion in three
low-frequency electrostatic waves as a simplified represe
tion of a randomly phased wave potential. This type
model has already been considered in@16–18#. It has been
shown in@17# and@18# that such simple models are useful
study the Hamiltonian dynamics in case of multiple sepa
trix crossings and for checking the numerical integration
the equations of motion~which can be performed with a
symplectic integrator@20# or with a non-Hamiltonian schem
@21#!. Contrary to our previous three waves model@17# , here
all the separatrices are moving in the phase space. Thus
GC are now allowed to visit the whole phase space instea
being enclosed in a single squared domain of the ph
space. Here, we analyze the possibility of large scale di
sion in a slowly varying three wave Hamiltonian. The G
motion is described as a sum of a two types of displa
ments, a first one from phase space domains to neighbo
ones and a second one describing the changes of the
positions inside the domains. The latter motion has alre
been explained in@17# and @18# where, using a statistica
method, the problems related to the very large numbe
separatrix crossings have been overcome. In the pre
work the former motion is described statistically and deriv
from the time evolution of a probability distribution. Th
main feature of our method is the transformation of the c
tinuous dynamics into a discrete dynamics on gridpoi
where the motion reduces to aspaced constrained random
walk similar to the one discussed by@19#, i.e., a random walk
where only few directions and lengths for the displaceme
are allowed. In our case, the constraints are closely relate
the rules determining the separatrix crossings.

In Sec. II, we define the three wave Hamiltonian and d
cuss the structure of the potential: position of the separatr
and areas of the domains in phase space. In the next sec
we discuss a few simple rules permitting us to follow the G
ly
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motion with a quite good accuracy. These rules are use
show that the stroboscopic trajectories in a periodic box
the phase space for high Kubo number are very close to
trajectories of the frozen Hamiltonian~trajectories in the
Hamiltonian at a fixed time!. In Sec. IV, we define what we
call an equivalent phase space and define the rules for l
scale motion induced by separatrix crossings. In Sec. V,
give our conclusions.

II. GUIDING CENTER MOTION IN A THREE WAVE
HAMILTONIAN SYSTEM

The analytic description of the charged particle motion
strong magnetic field can be simplified by applying an av
aging transformation to remove the high frequency gyrat
of the particle around the magnetic field lines. Considerin
straight and homogeneous magnetic field, i.e.,B5B1z and
the absence of an electric field in the1z direction, the aver-
aged motion, called the GC motion, reduces to a free fli
along the magnetic field and to a slow motion in a directi
perpendicular to both the electricE(x,y,t) and the magnetic
fields. The resulting equations of motion are known as
E3B GC motion, which reads

d

dt
Y5Ub1

c

B
E~x,y,t !3B, ~7!

whereY5x1x1y1y1z1z is the GC position andU is acon-
stantvelocity parallel to the main magnetic fieldb5B/B. In
the plane perpendicular toB the dynamics is obviously a
Hamiltonian with

H~x,y,t !52~c/B!F~x,y,t ! ~8!

and

E~x,y,t !52¹F~x,y,t !. ~9!

Here,x and y are canonically conjugated coordinates. Th
Hamiltonian system is a first-order approximation to the G
motion in an electrostatic turbulence, e.g., a drift wave t
bulence of fusion plasmas.

From the point of view of Hamiltonian systems, the lo
frequency limit is very peculiar. It is well known that in thi

case an adiabatic invariant exists and the 11
2 Hamiltonian

system is nearly integrable. This fact has not been inclu
in previous theories. We shall prove below that theE3B GC
dynamics in very low frequency electrostatic waves is go
erned by the mechanism of separatrix crossings.

We consider the following three-wave electrostatic pote
tial F( x̄,ȳ, t̄ ):

F~ x̄,ȳ, t̄ !52pF0$sin@ ȳ1 t̄ #1sin@cos~p/6!x̄2sin~p/6!ȳ

1 3
2 t̄ #1sin@2cos~p/6!x̄2sin~p/6!ȳ1 1

2 t̄ #%,

~10!

where F0 is an amplitude and$x̄,ȳ, t̄ % are dimensionless
spatial and time coordinates reduced byk0 andv0 , and the
equations of motion are
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dx̄

d t̄
52K

d

dȳ
F̄,

dȳ

d t̄
5K

d

dx̄
F̄, ~11!

where F̄5F/F0 . The parameterK5cF0k0
2/Bv0 is the

Kubo number. The dimensionless Hamiltonian is simp
H̄( x̄,ȳ, t̄ )5F̄( x̄,ȳ, t̄ ). The wave vectors and wave freque
cies are chosen to satisfy five main conditions on the g
metrical structure of the potential, namely,~i! we impose that
for all times all equipotentials are closed curves,~ii ! the po-
tential has no fixed~time independent! straight separatrices
~iii ! the potential is spatially periodic~this condition is
needed for developing the semianalytical analysis of the
diffusion!, ~iv! the wave vectors are chosen isotropic in t
(x,y) plane, and~v! the potential is periodic in time.

These constraints are sufficient to avoid the possibility
trapping the guiding centers. The lowest value of the Ku
number considered in our numerical investigations isK
5500, an already high value compared with that of@7# and
@5#.

The structure of the potential~10! at various timest̄ /2p

50, t̄ /2p51/30, t̄ /2p51/12 is shown in Fig. 1, 2, and
6, respectively. The notations used in the figures areT̄

5 t̄ /2p, X̄5 x̄/@2p cos(p/6)#, and Ȳ5 ȳ/2p. The phase
space is divided in periodic cells by three sets of strai
separatrices defined by

ȳ52pn112 t̄ , 2sinS p

3 D x̄1
1

2
ȳ52pn22

3

2
t̄ ,

~12!

sinS p

3 D x̄1
1

2
ȳ52pn32

5

2
t̄ ,

wheren1 ,n2 ,n3 are integers.
At time t̄ 50 ~Fig. 1! the three separatrices of the pote

tial cross at a single point, dividing the phase space in
angles all similar in shape and all having the same surf
area. These triangles ordomainsin the phase space are d
notedD1 or D2 according to the sign of the potential. At
later time, e.g.,t̄ /2p51/30 ~Fig. 2!, the triangles of the se

FIG. 1. Separatrices of the Hamiltonian~8! represented at time

t̄ 50 showing two different domainsD1 andD2.
o-
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D1 have a smaller surface area than at timet̄ 50 whereas
the domains of the setD2 now have a hexagonal shape a
have larger surface area. The crossing points of the th
separatrices att̄ 50 are the initial points of a new set o
domainsD3. At t̄ /2p51/12 ~see Fig. 6! the structure of the
potential is given by a regular hexagon~domainsD2) en-
circled by an ensemble of identical triangles of the setsD1
and D3. From time t̄ 52p/12 to t̄ 52p/6 the process con
tinues until the trianglesD1 disappear and are replaced b
new domainsD4. Analyzing the equations of the separ
trices, we see that the structure of the potential is recove
each t̄ 52p/6 but with shifted positions. For instance
the intersection point of the separatrices$x̄,ȳ%
5$22p/12,2p/3% at time t̄ 52p/6 is the closest to the in
tersection point$x̄,ȳ%5$0,0% at time t̄ 50. The domains are
thus moving horizontally and vertically at a speedv̄x[ x̄/ t̄
5(21/2)/cos(p/6) and v̄y[ ȳ/ t̄ 52, respectively. The sur
face area of the domains can also be evaluated with the
of Eqs.~12!. In the time intervalt̄ 50 to t̄ 52p/6 the surface
areaS1 , S2 , and S3 of the domainsD1, D2, andD3 are
given, respectively, by

S15
~2p!2

2 cos~p/6!
S 126

t̄

2p
D 2

,

S25
~2p!2

2 cos~p/6!
F22S 126

t̄

2p
D 2

2S 6
t̄

2p
D 2G , ~13!

S35
~2p!2

2 cos~p/6!
S 6

t̄

2p
D 2

.

To get the surface area in the next time intervalt̄ 52p/6 to
t̄ 54p/6, the indexes in Eqs.~13! must be shifted by one uni
and the time increased by 2p/6. The surface area of th

FIG. 2. Separatrices of the Hamiltonian~8! represented at time

t̄ /2p51/30 showing the domainsD1 andD2 and the new domains
D3. A comparison with Fig. 1 shows a displacement of the doma
along the2x and1y directions.
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domainsD2, D3, andD4 in the time intervalt̄ 52p/6 to
t̄ 54p/6 are thus given, respectively, by

S25
~2p!2

2 cos~p/6!
F126S t̄

2p
2

1

6
D G2

,

S35
~2p!2

2 cos~p/6!
H 22F126S t̄

2p
2

1

6
D G2

2F6S t̄

2p
2

1

6
D G2J ,

~14!

S45
~2p!2

2 cos~p/6!
F6S t̄

2p
2

1

6
D G2

.

This process continues forever, new domains denoted
larger indexD5, D6, . . . with surface areaS5 , S6 , . . . re-
placing the disappearing ones. We note that a periodi
cell of the potential has surface areaS̄5(2p)2/
@cos(p/6)sin(p/6)#. The time evolution of the surface area
the domains in phase space is summarized in a single g
~Fig. 3!, where the vertical axis represents the surface of
domains whereas the horizontal axis is the time axis.

The surface area of a domain is measured vertically ei
between two ‘‘s’ ’ curves or between an ‘‘s’ ’ curve and one
of the horizontal lines. At the starting timet̄ 50, only two
types of domains~domainsD1 andD2) fill the phase space

Considering the very low frequency limit of the wav
evolution and, because of the Hamiltonian nature of
equations of motion, the GC displacement follows a sm
number of very simple rules~first proposed in@22#, see also
@23#!.

~i! A separatrix crossing is an instantaneous event. Th
a good approximation for very large Kubo numberK ~or
equivalently very small wave frequencies! since the motion
along a separatrix is performed in a very short time inter
compared to the time interval between two separatrix cro
ings.

FIG. 3. Time evolution of the surface areas of the domains
the phase space represented during 1/2 of the period. The dyna
of a GC with initial condition in domainD1 and canonical action
I 050.28 is also shown. Timest1 ,t2 , . . . ,tn are separatrix crossing
times, i.e., times at which the area of the domain containing the
is equal to the canonical action of the GC.
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~ii ! The canonical action is conserved except at separa
crossing times, meaning that the surfaces enclosed by
trajectories are constant whereas the surfaces enclosed b
separatrices are not.

~iii ! The separatrix crossing occurs when the surface
closed by the separatrix of the domain containing the GC
equal to the surface enclosed by the trajectory of the GC

~iv! The new domain has constant or increasing area.
For example, a GC starting att̄ 50 from domainD1 with

the canonical action equal to the area of this domain w
immediately quit his domain. All thesix domains surround-
ing each domainD1 have increasing area and are thus a
to capture the GC. Each of the three smallest domains co
capture the GC with probabilityp1→3[(1/3)(dS3 /d t̄)/
(dS1 /d t̄), whereas the three largest domains could capt
the GC with probabilityp1→2[(1/3)(dS2 /d t̄)/(dS1 /d t̄).
Recalling Eqs.~14!, the transition probabilities fort̄ /2p in
the interval@0,1/6# are readily evaluated:

p1→35p[UdS2

d t̄
Y dS1

d t̄
U5

~1212t̄ /2p!

~126 t̄ /2p!
, ~15!

p1→25q[UdS3

d t̄
Y dS1

d t̄
U5

6 t̄ /2p

~126 t̄ /2p!
. ~16!

At t̄ 50, p1→250 and the GC is necessarily capture
~with probability 1/3! by one of the~three! domainsD2 ~pro-
vided the GC is captured by the nearest neighbor!. It is also
worth noting that rules~i!–~iv! do not depend on the Kubo
number. This implies that the GC dynamics, governed by
separatrix crossings, is considered to be in asaturated re-
gime for large Kubo numbers: the dynamics is insensitive
changes in the value of the Kubo number~or in the wave
frequency!. We therefore expect that the GC diffusion w
follow a complete trapping scaling law, i.e.,D̄(K)5K0.

Let us consider a GC initially in one of the domainsD1
with a canonical actionI 0 smaller than the area of its do
main. The behavior of this GC is depicted in Fig. 3. At tim
t1 the canonical action of the GC is equal, for the first tim
to the surface of domainD1. According to rule~iii ! the GC
performs a separatrix crossing to reach either one of the
mains of the setD2 or one of the setD3, respectively, with
a probability p or q divided by the number of accessib
domains~i.e., three in the case of transitions to first neig
bors and for each set, see Figs. 1, 2, and 6!, and canonical
action I 1 or I 18 ~with I 18,I 1). This event is a first kind~de-
notedT1) of separatrix crossing. At timet252p/62t1 ~see
Fig. 2! the canonical action of the GC could be equal to t
surface area of the domainsD2. If this happens, the GC
performs a new separatrix crossing~of type T2), which
brings it with probability 1 into one of the three neares
domainsD3 and with new canonical actionI 0 ~its initial
one!. At time t354p/61t1 ~see Fig. 3! the canonical action
I 0 equals the surface area of domainD3. The GC having this
action performs a separatrix crossing~of type T1) to one of
the three nearest domainsD4 or to one of the three neare
domainsD5 with a probability given, respectively, byp/3 or
q/3 and new canonical actionsI 1 or I 18 . Thus, with the help
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of Fig. 3, we are able to identify the times of occurrence
the separatrix crossings and the sets of domains where
GC is moving to. This evolution for the first five separatr
crossings is shown in Table I. The table gives the times
separatrix crossings, the name of the domains after a sep
trix crossing, the new values of the canonical action, and
transition probability to perform a jump to a new doma
The GC dynamics depicted here is valid for a specific ini
condition, defined by the initial domainD1 and the initial
canonical actionI 0 , because as we see here, most of
separatrix crossings are performed with transition probab
ties q andp determined by the initial state of the GC.

We observe that the canonical action of the GC at stro
scopic timest̄ 54pn (n is an integer! switches between the
initial canonical action and a second value, thecomplemen-
tary canonical actionI 18 . As a consequence, at stroboscop
times, the positions of the GC are the points oftwo trajecto-
ries of the frozen Hamiltonian~i.e., the trajectories of the
Hamiltonian with t̄ considered as a constant! that enclose a
surface whose area equals either the initial canonical ac
of the GC or thecomplementarycanonical actionI 18 . The
randomness of the GC trajectory is in fact strongly spatia
constrained because, as we see here, the GC must b
specific trajectories of the frozen Hamiltonian at period
times.

The relationship between one stroboscopic trajectory w
two trajectories of the frozen Hamiltonian~at time t̄ 50) is
shown in Fig. 4, where we show the numerical solution
the equations of motion at large Kubo number~here K
5500) and in Fig. 5, where the same points, brought bac
a single moving periodicity box of the phase space, de
mine two distinct trajectories of the frozen in time Ham
tonian. To observe numerically this property of the thr
waves Hamiltonian, the equations of motion of motion~11!
were solved using a fourth-order Runge-Kutta~RK! method.
As in @18#, the statistics of events~the values of the transition
probabilities! is not exactly the expected one but the acc
racy of the integrator seems sufficient for our purpose.
Kubo numberK5103, a stroboscopic point is obtained aft
43106 iterations of the RK. Most of the results were o

TABLE I. Separatrix crossing times, canonical actions, a
transition probabilities of the first five separatrix crossings. T
separatrix crossingst5 to t8 are similar to the separatrix crossings
t1 to t4 . A set of four separatrix crossings thus defines a fundam
tal periodicity in the diffusion mechanism.

Crossing time Domain name Canonical action
Transition
probability

0 D1 I 0

t1,2p/12 D1→D2 I 0→I 1 p/3
D1→D3 I 0→I 18 q/3

t252p/62t1 D2→D3 I 1→I 0 1/3
t354p/61t1 D3→D4 I 0→I 1 p/3

D3→D5 I 0→I 18 q/3
t456p/62t1 D3→D5 I 18→I 0 1/3

D4→D5 I 1→I 0 1/3
t558p/61t1 D5→D6 I 0→I 1 p/3

D5→D7 I 0→I 18 q/3
f
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tained with an Alpha computer and a CRAY J916 comput
The numerical simulations performed over 1000 periods
the potential for 64 initial conditions were obtained on
CRAY T3E computer and required about 8h CPU time
each of the 64 processors. The accuracy of the nume
results can be checked from the stroboscopic plots of the
trajectories. The case of the GC starting in domainD1 with
a canonical action slightly smaller than the surface of
homing domain is typical of the behavior of all the traject
ries.

FIG. 5. The positions of the GC of Fig. 4 at stroboscopic tim
~1000 periods! shown in a reference moving square reproduce
trajectories of the frozen Hamiltonian. One initial condition gives
trajectory corresponding to the initial GC canonical action plus
second trajectory corresponding to a complementary canonica
tion ~small circles!.

e

n-

FIG. 4. A GC stroboscopic trajectory~1000 periods, Kubo num-

ber K51000). The initial condition is X̄50.375/2p, Ȳ
50.75/2p cos(p/6).
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III. A SEMIANALYTICAL ESTIMATE
OF THE DIFFUSION COEFFICIENT

We now briefly report a method for~i! determining proba-
bilistically the domains that could be visited by the GC a
certain time and~ii ! evaluating the diffusion coefficient from
the GC dynamics, i.e., from the separatrix crossings.

In this method, each domain of the phase space with
full structure~Fig. 6! is replaced by its elliptic point~Fig. 7!.
These points are distributed regularly in the phase space
to the periodicity of the potential. The best realization
obtained at timest̄ /2p5(2112k)/12 ~wherek, theequiva-
lent phase space time, is a positive integer! when all the
triangles in the phase space have the same shape and
~Fig. 6!. In this representation, a GC displacement reduce
a jump from one gridpoint to another. The integerk can be
used to count the number of separatrix crossings or can
used as a measure of time as can be seen in Fig. 3.
directions of the jumps are determined by the rules fo
separatrix crossing, i.e., they are performed in directi
given by the positions of the elliptic points of the domai
having increasing surface area~the separatrix crossings ar
spaced constrained jumps!. The coordinates of a point in th
grid m,n are chosen in such a way that atk51 the points
$m,n%5$2a13,4b13%, wherea and b are arbitrary inte-

FIG. 6. Representation of the domains of the phase space at

t̄ /2p51/12, i.e.,k51 and their elliptic point.

FIG. 7. The equivalent phase space is the set of elliptic point
the domains shown in Fig. 6. The distances are rescaled~essentially
by a factor 2 on the vertical axis! for simplicity of the analysis.
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gers, correspond to the domainsD1 whereas the points
$m,n%5$2a12,4b12% correspond to the domainsD2 and
the points $m,n%5$2a11,4b13% correspond to the do
mainsD3. All the remaining positions on the grid must b
removed from the definition of the equivalent phase spa
At the next equivalent phase space time, the domainsD1
have disappeared and are replaced by the domainsD4 ~see
Fig. 3!. Therefore, atk52 the points$m,n%5$2a13,4b
13% correspond to the domainsD4 whereas the other point
keep their relations to the domainsD2 andD3. At k53 the
points$m,n%5$2a12,4b12%, previously related to the do
mainsD2, now belong to the domainsD5 and so on.

The jumps~separatrix crossings! follow the rules$n→n
11,m→m11% or $n→n12,m→m12%. More specifically,
the separatrix crossing of typeT1 is a jump with probability
p/3 from a point$m,n% to one of the three points$m11,n
11%, $m21,n11%, $m,n22% or with probabilityq/3 ~re-
call p1q51) to one of the three points$m11,n
21%, $m21,n21%, $m,n12%. A separatrix crossing of
typeT2 is a jump with probability 1/3 from a point$m,n% to
one of the three points $m11,n11%, $m21,n
11%, $m,n22%.

We now introduce a probability distributionP(m,n,k) of
finding a GC at the pointm,n at time k. We consider the
initial condition P(m,n,0)5dm2m0 ,n2n0

, i.e., the GC is ini-

tially at the point $m0 ,n0%. This initial point could be
$m,n%5$3,3% as in Fig. 7. After the first separatrix crossin
the probability distribution is

P~m,n,1!5
p

3
~dm2m021,n2n0211dm2m011,n2n021

1dm2m0 ,n2n022!1
q

3
~dm2m021,n2n011

1dm2m011,n2n0111dm2m0 ,n2n012! ~17!

since the probability distribution isp/3 in three domainsD2
and q/3 in three domainsD2. With the initial condition
P(3,3,0)51, the first separatrix crossing givesP(4,4,1)
5P(2,4,1)5P(3,1,1)5p/3 and P(4,2,1)5P(2,2,1)
5P(3,5,1)5q/3. At the second separatrix crossing~of type
T2) only the part of the probability distribution correspon
ing to the domainsD2 changes as shown in Table I. Thus
describe the second separatrix crossing, we need three p
probability distributions, denotedA(m,n,k), B(m,n,k),
C(m,n,k), the sum of which reproduces the probability di
tribution

P~m,n,k!5A~m,n,k!1B~m,n,k!1C~m,n,k!. ~18!

The initial conditions are chosen as follows:

A~m,n,0!5dm2m0 ,n2n0
, B~m,n,0!50, C~m,n,0!50.

~19!

Right after the first separatrix crossing, we have

P~m,n,1![~Tp1Tq!A~m,n,0!, ~20!

where

e

of
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TpA~m,n,0![
p

3
$A~m21,n21,0!1A~m11,n21,0!

1A~m,n12,0!%,

TqA~m,n,0![
q

3
$A~m21,n11,0!1A~m11,n11,0!

1A~m,n22,0!%. ~21!

Similarly, we define the phase space translationT1 :

T1A~m,n,1![
1

3
$A~m21,n21,1!1A~m11,n21,1!

1A~m,n12,1!%. ~22!

Obviously,TpA(m,n,0) is nonzero on the points correspon
ing to the domainsD2 where the GC has the canonical a
tion I 1 andTqA(m,n,0) is nonzero on the points correspon
ing to the domainsD3 where the GC has the canonic
action I 18 .

In A(m,n,k), we collect the part of the probability distri
bution, which changes at each separatrix crossing, i.e
each time intervalD t̄ /2p51/6, whereas inB(m,n,k) and
C(m,n,k) we collect the part of the probability distribution
which changes each two separatrix crossings, i.e., at e
time intervalD t̄ /2p51/3. The first separatrix crossing give

A~m,n,1!5TpA~m,n,0!, B~m,n,1!5TqA~m,n,0!,
~23!

C~m,n,1!5C~m,n,0!,

whereA(m,n,1) andB(m,n,1) are, respectively, the prob
ability density for the GC to be in a domainD2 and in a
domainD3 . At the next separatrix crossing timet252p/6
2t1 , i.e., k52, only the partA(m,n,1) of the probability
distribution changes because the separatrix crossing~of type
T2) is a jump from the domainsD2 to one of three neares
domainsD3 ~see Table I!. The second separatrix crossin
leads to

A~m,n,2!5T1A~m,n,1!, B~m,n,2!5B~m,n,1!,
~24!

C~m,n,2!5C~m,n,1!.

The partial probabilitiesA(m,n,2) andB(m,n,2) are non-
zero on the points corresponding to the domainsD3 but with
different canonical actionsI 0 and I 18 . For later convenience
this transformation can also be written

A~m,n,2!5T1@TpA~m,n,0!1C~m,n,0!#,
~25!

B~m,n,2!5TqA~m,n,0!, C~m,n,2!50.

The probability distribution atk52 is shown in Fig. 8,
where the values ofP(m,n,2) are given at their position
$m,n%. The arrows indicate the directions of the transfer
probability distribution due to the next separatrix crossin
The arrows represents symbolically a transport of the pr
ability distribution in the phase space; it multiplies the val
of the probability distribution at a given point by the trans
tion probability~in this casep/3 for the gray arrows andq/3
at

ch

f
.
-

for the black ones as shown in Table I! and transports the
obtained value to a new position in phase space. The va
of the probability distribution that are transported this w
are given in Table II for the first five separatrix crossings

FIG. 8. The probability distribution at the equivalent pha
space timek50 and its change due to a third separatrix crossin

TABLE II. Equivalent phase space timesk, domain names, ca
nonical actions, and transfer of probability distribution after the fi
five separatrix crossings.

k domain action probability distribution

0 D1 I 0 1

1 D2 I 1
p

3
~1!

D3 I 18
q

3
~1!

2 D3 I 0
1

3 Sp3D
D3 I 18

q

3

3 D4 I 1
p

3 S13 p

3D
D5 I 18

q

3 S13 p

3D
D3 I 18

q

3
~1!

4 D5 I 0
1

3 Sp33
1

3
3

p

3
1

q

3D
D5 I 0

q

3 S13 p

3D
5 D6 I 1

p

3 S13p

3
3

1

3
3

p

3
1

q

3D
D7 I 18

q

3 S13p

3
3

1

3
3

p

3
1

q

3D
D5 I 18 q

3 S13 p

3D
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The third (k53) separatrix crossing, of typeT1, concerns
the part of the probability distribution corresponding to d
main D3, i.e., B does not change. Thus, at timet354p/6
1t1 we have

A~m,n,3!5TpA~m,n,2!, B~m,n,3!5B~m,n,2!,
~26!

C~m,n,3!5TqA~m,n,2!

whereA(m,n,3), B(m,n,3), andC(m,n,3) are related, re-
spectively, to the domainsD4, D3, and D5 and to GC
with canonical actionsI 1 , I 18 , andI 18 .

The fourth separatrix crossing affects all the partial dis
butions except the one concerning the domainsD5, i.e., C
does not change and we have

A~m,n,4!5T1@A~m,n,3!1B~m,n,3!#,

B~m,n,4!50, ~27!

C~m,n,4!5C~m,n,3!.

In terms of the initial values, this transformation reads

A~m,n,4!5T1@TpT1$TpA~m,n,0!1C~m,n,0!%

1TqA~m,n,0!#,

B~m,n,4!50, ~28!

C~m,n,4!5TqT1$TpA~m,n,0!1C~m,n,0!%.

and the total probability distribution, afterk54 separatrix
crossings, is given by

P~m,n,4!5A~m,n,4!1C~m,n,4!. ~29!

The next four separatrix crossings are described by the s
formulas but withA(m,n,4), B(m,n,4), andC(m,n,4) for
new initial values. The whole scenario is summarized
Table II, where the probability distributionP(m,n,k), i.e.,
the probability to be at the equivalent phase space timek in
a given domain with a given canonical action, is given
the first five separatrix crossings and for an initial conditi
in domainD1 and for an initial canonical actionI 0 .

The transformation~28! is thus a mapping describing th
transport across the domains in the phase space. It is no
easy task to show that~i! the probability density defined b
the iterative procedure given hereabove leads to a Gaus
distribution and~ii ! the mean square displacement is prop
tional to t̄ , i.e., the process is diffusive. Here the average
a ‘‘function’’ defined on the equivalent phase space is
weighted sum at a given time of the value of the function
all the equivalent phase space points. The mean square
placement is accordingly evaluated as follows:

^r 2~k!&5(
m,n

~m21n2!P~m,n,k!. ~30!

The iterative procedure is very easily implemented o
computer~a few lines in Matlab language! and permits a
very easy evaluation of the mean square displacement.
result is typical of a diffusive process, i.e., a mean squ
-

-

e

n

r

an

ian
-
f
e
n
is-

a

he
e

displacement linear in time. The diffusion coefficient deriv
from Eq. ~29! still depends on the initial valueof the GC
canonical action through the transition probabilitiesp andq.
With p'0.66 andq'0.33 corresponding to a GC with ini
tial canonical actionI 05S/16 the diffusion coefficient of the
motion along them axis ~corresponding to thex axis! is
D̄m'6.083, whereas forp'0.95 andq'0.05 the result is
D̄m'7.65.

Figure 9 shows a linear increase of the averaged m
square displacement obtained from the numerical solutio
the equations of motion performed for 500 periods of t
potential and for two different values of the Kubo number:
K51000~continuous line! and atK5500 ~dashed line!. We
observe that the slopes of the mean square displacem
~averaged over 64 trajectories!, i.e., the dimensionless diffu
sion coefficients are almost identical:D̄(K)'K0.

To facilitate the comparison with the result of the sem
analytical method we performed another numerical simu
tion with 64 GC having different initial positions but th
same initial canonical actionI 05S/16. In this case, a diffu-
sion coefficientD̄x'1.90 along thex axis and a diffusion
coefficientD̄y(K)'1.78 along they axis are obtained. The
former result is within 15% from the value of the semian
lytic calculation: D̄x'D̄m cos2(p/6)/4'2.09. Therefore the
semianalytical calculation reasonably represents the num
cal results for a given initial action.

IV. CONCLUSIONS

A three wave Hamiltonian has been considered as a s
plified model of E3B electrostatic turbulence. We hav
shown numerically and analytically that for large values
the Kubo number the GC dynamics is controlled by the se
ratrix crossings, i.e., the canonical action is conserved,

FIG. 9. The mean square displacement^ r̄ 2&5^x̄21 ȳ2& averaged
over 64 trajectories with initial conditions taken on a grid in pha
space. The initial canonical actions are consequently random n
bers. 500 periods are shown. The Kubo numbers areK51000~con-
tinuous line! andK5500 ~dashed line!. The scaling for the dimen-

sionless diffusion coefficients is approximativelyD̄(K)'K0 and
the average numerical value is'2125/500'4.25.
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separatrix crossings are instantaneous, and so on. Usi
method that reduces the separatrix crossings to jumps f
one gridpoint to another, we have determined iteratively
change in time of the probability density. The mean squ
displacement and the diffusion coefficient have also b
evaluated. We have shown that the GC diffusion in th
waves is a random walk with the following properties:~i! the
dynamics considered here is not a continuous time rand
walk ~CTRW! because all the separatrix crossings occu
fixed time intervals,~ii ! the dynamics is a spaced constrain
random walk~see, e.g.,@19#! because the separatrix crossin
can be reduced to spatial translations of the phase spa
directions defined by angles multiples of 30°, and~iii ! the
probabilities of jumps for two successive separatrix crossi
on

e

ys

I.

.

a
m
e
e
n
e

m
t

in

s

are not independent but the direction of the separatrix cro
ing is chosen at random. Our semianalytical model of dif
sion leads to a complete trapping scaling law, i.e., the dim
sionless diffusion coefficientD̄ is independent of the Kubo
number: D̄(K)5K0. This scaling is valid for very large
Kubo numbers.

ACKNOWLEDGMENTS

This work has been done while one of us~B.W.! was at
the Center de Recherche CEA, Cadarache~France! with the
financial support of a Euratom Mobility grant. Discussio
with Dr. F. Spineanu and Dr. M. Vlad and with Professor
Elskens are greatly acknowledged.
J.

R-

et-
-

@1# M. B. Isichenko and W. Horton, Comments Plasma Phys. C
trol. Fusion14, 249 ~1991!.

@2# A. V. Gruzinov, M. B. Isichenko, and Ya. L. Kalda, Zh. E´ ksp.
Teor. Fiz.97, 476 ~1990! @Sov. Phys. JETP70, 263 ~1990!#.

@3# T. H. Dupree, Phys. Fluids10, 1049~1967!.
@4# M. Ottaviani, Europhys. Lett.20, 111 ~1992!.
@5# J.-D. Reuss and J. H. Misguich, Phys. Rev. E54, 1857~1996!.
@6# B. Weyssow and M. De Leener~private communication!.
@7# M. Pettini, A. Vulpiani, J.-H. Misguich, R. Balescu, M. D

Leener, and J. Orban, Phys. Rev. A38, 344 ~1988!.
@8# M. De Leener, Phys. Rev. E50, 502 ~1990!.
@9# M. Vlad, F. Spineanu, J.-H. Misguich, and R. Balescu, Ph

Rev. Lett.~to be published!.
@10# M. B. Isichenko, W. Horton, D. E. Kim, E. G. Heo, and D.-

Choi, Phys. Fluids B4, 3973~1991!.
@11# I. Doxas, W. Horton, and H. L. Berk, Phys. Fluids A2, 1906

~1990!.
@12# A. A. Chernikov, A. I. Neistadt, A. V. Rogalsky, and V. Z

Yackhnin, Chaos1, 206 ~1991!.
-

.

@13# W. Horton, Plasma Phys. Controlled Fusion27, 937 ~1985!.
@14# M. Vlad, J.-D. Reuss, F. Spineanu, and J.-H. Misguich,

Plasma Phys.~to be published!.
@15# J.-H. Misguich, J.-D. Reuss, M. Vlad, and F. Spineanu, EU

CEA-FC Report No. 1622~Cadarache, 1998! @Physicalia~to
be published!#.

@16# J.-H. Misguich and R. Nakach, Phys. Rev. A44, 3869~1991!.
@17# B. Weyssow, Phys. Lett. A22, 234 ~1997!.
@18# B. Weyssow, J. Plasma Phys.59, 1 ~1997!.
@19# L. B. Koralov, S. K. Nechaev, and Ya. G. Sinai, Chaos1, 131

~1991!.
@20# B. Weyssow and M. Eberhard~unpublished!.
@21# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V

terling,Numerical Recipes~Cambridge University Press, Cam
bridge, 1987!.

@22# I. M. Lifshitz, A. A. Slutskin, and V. M. Nabutovskii, Zh.
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